New Horizons Reaches Pluto: A Collection of Imagery, Explainers and Humour

By Gizmodo UK on at

Unless you have been living under an intergalactic rock for the past few days, you will know that NASA's New Horizons probe this week flew by Pluto, giving humankind its closest glimpse ever of the dwarf planet. Here we have collated some great information about the historic mission – from NASA visuals to questionable brand-bandwagoning Tweets.

The Complete Story of the Pluto Flyby in 12 NASA Visuals 

By Kaila Hale-Stern

The Pluto flyby with New Horizons mission control was beamed back to Earth via accurate-to-the-second visualisations and infographics. The results were glorious on the American Museum of Natural History’s IMAX screen.

The New Horizons spacecraft is moving very, very fast:

The Complete Story of the Pluto Flyby in 12 NASA Visuals 

She is a beauty — compact yet complex, with named parts:

The Complete Story of the Pluto Flyby in 12 NASA Visuals 

What we’re looking at, via io9: New Horizons is equipped with seven different instruments, including three optical instruments, two plasma instruments, a dust sensor, and a radio science receiver/radiometer:

  • LORRI: Long-range and high-resolution visible mapping
  • SWAP: Solar wind
  • PEPSSI: Energetic particle spectronomy
  • Alice: Ultraviolet imaging spectroscopy
  • Ralph: Visible mapping, infrared spectroscopic mapping
  • SDC: Student-built dust counter
  • Rex: Radio science and radiometry

Recent days have taught us much we did not know:

The Complete Story of the Pluto Flyby in 12 NASA Visuals 

Our continuing mission:

The Complete Story of the Pluto Flyby in 12 NASA Visuals 

This stamp is now totally a collector’s item and full of lies:

The Complete Story of the Pluto Flyby in 12 NASA Visuals 

Oh, you beautiful, shiny space beast:

The Complete Story of the Pluto Flyby in 12 NASA Visuals 

That’s no moon!!!

The Complete Story of the Pluto Flyby in 12 NASA Visuals 

New Horizons is three billion light years from home and has taken 9 1/2 years to reach this destination. Getting her there is like “threading a needle from New York to LA”.

The Complete Story of the Pluto Flyby in 12 NASA Visuals 

Nitrogen, methane, carbon monoxide and more for everyone!

The Complete Story of the Pluto Flyby in 12 NASA Visuals 

At this point the scientists were getting verklempt: “This is a post-human planetary encounter.”

The Complete Story of the Pluto Flyby in 12 NASA Visuals 

There she is:

The Complete Story of the Pluto Flyby in 12 NASA Visuals 

You can download the “OpenSpace” software utilised here in its pre-alpha release in binary form:

The Complete Story of the Pluto Flyby in 12 NASA Visuals 

Its purpose is to “digitise the universe,” and in the future it will also be at work on space weather projects. Space weather. What a time to be alive.

Why It'll Take New Horizons 16 Months to Send Us This Week's Data

By Maddie Stone

NASA's highest-resolution image of Pluto to date was taken 16 hours before today’s historic flyby. Today we’ll receive a new set of images at a resolution ten times higher. And Pluto Christmas is just getting started, because it’s going to take NASA 16 full months to download all the data New Horizons collects this week.

The trip to Pluto might have been record-smashingly fast, but sending data back across 3 billion miles of empty space is anything but. To understand why, let’s take a quick peek beneath the hood at how one of the most advanced scientific reconnaissance missions ever built collects, stores and transmits data.

A 3-Billion-Mile Snapchat

Running on a mere two to 10 watts of power (roughly as much as a nightlight) each of New Horizon’s seven state-of-the-art scientific instruments is currently busy collecting a deluge of data on the surface composition, atmosphere, and geologic features of Pluto, its moon Charon, and its four smaller moons.

This data is being sent to one of two onboard, solid-state, 8 gigabyte memory banks. From there, the spacecraft’s main processor — a radiation-proof 12 megahertz Mongoose V — compresses, reformats, sorts and stores the data on a recorder, which NASA likens to a flash memory card for a digital camera. Once stored and formatted, the precious science and telemetry (aka housekeeping) data is ready for transmission to Earth—it’s being sent in compressed format now, and will be sent in a lossless format later on.

New Horizons communicates with the Earth through a series of four-dish antennae. For key scientific data, it’s primarily making use of a large (2.1 metre-wide), high-gain antenna. But the high gain beam is only 0.3 degrees wide, means New Horizons must be pointing straight at the Earth in order for us to receive its signal. That’s why the craft’s comm system also includes a wider-beam (4 degree) medium gain disk, which it can use as a backup in cases when pointing might not be as accurate. The craft’s comm system also includes two broad-beam, low-gain antennas, which were used at the mission’s outset for near-Earth communications but are largely vestigial at this point.

Each of these spacecraft’s antenna broadcasts and receives science and telemetry data and commands over the x-band, a set of frequencies that are widely used by satellites, wireless LANs, and cellphones. The x-band comprises the 3-30 GHz frequency range, falling within the microwave band of the electromagnetic spectrum. The small wavelength of microwaves (compared with radio waves) mean that it’s easier to transmit narrow beams of them between two points; for instance, two parabolic dishes situated several light hours apart.

Despite travelling somewhat faster than radio waves, it still takes an x-band signal roughly 4.5 hours to travel the 3 billion miles from Earth to Pluto, which is why, even though New Horizons technically ‘phoned home’ shortly after 4:00 pm ET yesterday, we had to wait until around 9 pm ET to receive its message.

Sunday and Monday, NASA received a series of ‘failsafe’ downlinks, which are preliminary sets of high-priority data from all seven scientific instruments, just in case something went terribly wrong and New Horizons didn’t survive the flyby.

Whenever New Horizons is downlinking data to Earth, it literally has to pivot to face us, meaning it can’t take new photos. And right now, we want our spacecraft to be gathering as much intel as possible on Pluto and its five (known!) moons.

The Solar System’s Worst Dialup Connection

After the next few hours of round-the-clock data collection, New Horizons will be able to focus more of its time on sending its tantalising new images and numbers home. And NASA is very eager for that process to get started, because the rate at which data can be transmitted to the Earth is agonisingly slow.

Why It'll Take New Horizons 16 Months to Send Us This Week's DataScreenshot from Deep Space Network’s Goldstone receiver, one of three ground-based antennae receiving data from New Horizons.

A series of three high-sensitivity ground-based receivers — collectively known as NASA’s Deep Space Network — are currently downlinking New Horizons’ data at a plodding 2,000 bits per second. To understand just how much distance matters, we can compare this rate with the 38 kilobits per second (slightly slower than the transmission speed for modern computer modems) at which we were downlinking data during New Horizons’ Jupiter flyby in January of 2007 (Jupiter was, at the time, a mere 500 million miles away from us). Practically, what this pre-dialup rate means is that it can take hours and hours for us to receive a single image or a small package of information.

But again, once the critical data collection phase is over, the New Horizons team is hopeful that we’ll be able to downlink somewhat faster. The craft is currently configured in what NASA calls ‘three-axis pointing mode’ (aka, Pluto observing mode), but it’ll transition over to ‘spin-stabilized mode’ after the encounter is over.

In spin mode, New Horizons will be pointing itself arrow-straight at the Earth, spinning along its axis for increased stability. As a result, NASA reckons we’ll be able to boost downlink speeds to something in the neighborhood of 4,000 bits per second over the next few days. That’ll help New Horizons send us back a sampling of the key scientific data its collecting right now.

4,000 bits per second may be double our current downlink speed, but downloading planetary science data over 3 billion miles is still quite a bit slower than loading your email on a 56K connection. Hence the reason it’s going to take us an estimated 16 months to send home all the data we collect in the next several days.

It’s worth keeping in mind that if anything DOES go wrong, if there’s a hardware malfunction on the spacecraft, or an issue with the downlink, we’ve got ten full years of Plutonium power to keep sending and resending our data. We can keep trying to phone home even as New Horizons presses forward toward the Kuiper Belt for the (planned) second phase of its mission, where NASA hopes to explore new icy, planetary bodies between 2017 and 2019.

If you’re really geeking out about this stuff, you can go on the Deep Space Network’s website and watch as some of the most sophisticated comm systems on planet Earth literally collect the information, bit by bit, that will allow us to build an entire world where all we had until very recently was a speck of light in the sky.

As eager as I am to learn more about Pluto, I’m OK with the insanely slow downlink. After all, it’s going to take the New Horizons science team much more than 16 months to figure out what it all means. And in the meanwhile, the rest of us get to wait, watch, and slowly soak up the latest fascinating insights as they filter back to us, bit by bit, from the cold, dark and inconceivably distant reaches of our solar system.


New Horizons Mission—Spacecraft Systems and Components

Deep Space Network Now

What to Expect When You’re Expecting a Flyby—The Planetary Society

Watch Neil deGrasse Tyson Talk About The Importance of Reaching Pluto

By Kaila Hale-Stern

Watch Neil deGrasse Tyson Talk About The Importance of Reaching Pluto

Neil deGrasse Tyson doesn’t classify Pluto as a planet. But he thinks it’s pretty damn important that we got there.

We were at a special “Breakfast at Pluto” event at the American Museum of Natural History. Co-hosted by Hayden Planetarium Director Neil deGrasse Tyson (known for the new Cosmos series and general space badassery), Denton Ebel, Chair and Curator of the Department of Earth and Planetary Sciences, and Carter Emmart, Director of Astrovisualization (the best title ever), we linked up with New Horizons mission control and labs, planetariums and science museums around the world for commentary and “accurate-to-the-second” visualisations of New Horizon’s Pluto approach.

“Breakfast at Pluto” united space enthusiasts at the AMNH and worldwide for two hours of outer space geeking out. There was laughter, there were people getting choked up, there were jokes about atmosphere and tidal locks. Here’s Dr. Tyson on why reaching Pluto matters and how our hyper-connected web culture makes it an exploration we can all share together:

And in case we ever get there in person, you can leave your hiking boots behind (but bring a warm coat):

The Worst Brand Tweets About the Pluto Flyby

By Alissa Walker

The Worst Brand Tweets About the Pluto Flyby

When will be the next time that humanity will be able to snap some images of a never-before-photographed maybe-planet while sailing past it at eight miles per second? Probably never. So brands jumped at the opportunity to capitalise on this historic achievement.