Australian Scientists Just Made A Major Breakthrough That Could Put Solar Power Anywhere

By Gizmodo Australia on at

A new type of electrode developed by researchers at RMIT University has the potential to not only boost the capacity of existing energy storage technologies by 3000 per cent, but it opens the door to the development of flexible, thin film, all-in-one solar capture and storage. We're talking the means to self-powering smart phones, laptops, cars and buildings.

And it has all been inspired by a plant.

The new electrode is designed to work with supercapacitors, which can charge and discharge power much faster than conventional batteries. Supercapacitors have been combined with solar, but their wider use as a storage solution is restricted because of their limited capacity.

RMIT's Professor Min Gu said the new design drew on nature's own genius solution to the challenge of filling a space in the most efficient way possible – through intricate self-repeating patterns known as fractals.

"The leaves of the western swordfern are densely crammed with veins, making them extremely efficient for storing energy and transporting water around the plant," said Gu, Leader of the Laboratory of Artificial Intelligence Nanophotonics and Associate Deputy Vice-Chancellor for Research Innovation and Entrepreneurship at RMIT.

Gu said the electrode is based on these fractal shapes – which are self-replicating, like the mini structures within snowflakes – and the team has used this naturally-efficient design to improve solar energy storage at a nano level.

"The immediate application is combining this electrode with supercapacitors, as our experiments have shown our prototype can radically increase their storage capacity – 30 times more than current capacity limits," says Gu. "Capacity-boosted supercapacitors would offer both long-term reliability and quick-burst energy release - for when someone wants to use solar energy on a cloudy day for example - making them ideal alternatives for solar power storage."

Combined with supercapacitors, the fractal-enabled laser-reduced graphene electrodes can hold the stored charge for longer, with minimal leakage. The fractal design reflected the self-repeating shape of the veins of the western swordfern, Polystichum munitum, native to western North America.

PhD researcher Litty Thekkekara, said because the prototype was based on flexible thin film technology, its potential applications were countless.

"The most exciting possibility is using this electrode with a solar cell, to provide a total on-chip energy harvesting and storage solution," Thekkekara said. "We can do that now with existing solar cells but these are bulky and rigid. The real future lies in integrating the prototype with flexible thin film solar – technology that is still in its infancy."

Flexible thin film solar could be used almost anywhere you can imagine, from building windows to car panels, smart phones to smart watches. We would no longer need batteries to charge our phones or charging stations for our hybrid cars, according to Thekkekara.

"With this flexible electrode prototype we've solved the storage part of the challenge, as well as shown how they can work with solar cells without affecting performance. Now the focus needs to be on flexible solar energy, so we can work towards achieving our vision of fully solar-reliant, self-powering electronics." [Nature]


Gizmodo Australia is gobbling up the news in a different timezone, so check them out if you need another Giz fix.